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Photoinduced Tomonaga-Luttinger-like liquid in a Mott insulator
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Photoinduced metallic states in a Mott insulator are studied for the half-filled one-dimensional Hubbard
model with the time-dependent density-matrix renormalization group. An irradiation of strong ac fields is
found to create, in the nonequilibrium steady state, a linear dispersion in the optical spectrum (current-current
correlation) reminiscent of the Tomonaga-Luttinger liquid for the doped Mott insulator in equilibrium. The spin
spectrum in nonequilibrium retains the des Cloizeaux—Pearson mode with the spin velocity differing from the
charge velocity. The mechanism of the photocarrier doping, along with the renormalization in the charge
velocity, is analyzed in terms of an effective Dirac model.
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I. INTRODUCTION

Doped one-dimensional (1D) Mott insulators are fascinat-
ing due to a special metallic state known as the Tomonaga-
Luttinger (TL) liquid," where excitations have collective
nature as distinct from the conventional Fermi liquid.> Spe-
cifically, the charge velocity becomes renormalized due to
the electron-electron interaction so that the charge excitation
propagates with a velocity different from that of spin
excitations—a hallmark of the “spin-charge separation.” Ex-
perimentally, TL liquids have been observed in quantum
wires and carbon nanotubes.?

Now, there is another way of making a Mott insulator
metallic, which is entirely different from the chemical dop-
ing. Namely, photodoping is now being highlighted as a way
to control the carrier density in 1D correlated systems.*~!0
Pump-probe experiments have shown that strong electric
fields can turn Mott insulating crystals into metals.*~® Theo-
retically, the change in the conductivity by irradiation was
studied in Refs. 9 and 10 with exact diagonalization. Fea-
tures in the photodoping conceptually distinct from the
chemical doping are (a) the system is out of equilibrium and
(b) two types of carriers, i.e., electrons (equals as doubly
occupied sites) and holes, coexist because they are pair pro-
duced. Although electron-hole systems in equilibrium have
been studied in the past in terms of the TL theory,'! proper-
ties, especially the spectral properties, of the nonequilibrium
metallic states induced by irradiation are yet to be under-
stood.

This has motivated the present work, where we shed light
on this problem by studying the optical (current-current) and
spin-correlation functions for a nonequilibrium steady state
in 1D Mott insulators in strong ac electric fields. This is done
in two steps: we first employ numerical simulations with the
time-dependent density-matrix renormalization group (td-
DMRG) (Ref. 12) to show that we have a TL-type linear
dispersion in the photodoped system, where the charge and
spin excitations have different velocities. We then confirm
the result from a field-theoretic result. A starting point is in
Refs. 13 and 14, where the present authors pointed out that
there is an interesting analogy between the Schwinger
mechanism in the decay of the quantum electrodynamics
(QED) vacuum governed by the electron-positron creation
rate’ and the dielectric breakdown of Mott insulators in dc
electric fields governed by the electron-hole creation rate.
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The corresponding phenomena in hadron physics is the for-
mation of quark gluon plasma after a high energy impact of
nuclei, where the quark anti-quark pair and the mass gap are
the counterparts, respectively, of the electron hole pair and
the Mott gap.'® In one dimension, correlated electron sys-
tems can be mapped to a simple Dirac model via the massive
Thirring model, which is dual to the sine-Gordon model for
charge degrees of freedom of the 1D Hubbard model. We
then analyze the photodoping with the effective Dirac model.
There, the optical spectrum is formulated with the Floquet
analysis for strong ac external fields. The result reproduces
the main features in the td-DMRG result, providing a physi-
cal picture for the dynamics of the nonequilibrium collective
modes in the photoinduced state.

II. NONEQUILIBRIUM STEADY STATE

We consider a Mott insulator in strong ac electric fields in
the half-filled 1D Hubbard model with the Hamiltonian
given, in standard notation, by H(t)=Hy+H(t), where H,
:—thopE,-(,(cLloci,ﬁH.c.)+ UZnyn; and  Hp(t)=F6(t)sin
(Q)%in; (nj,=c) c;p and n;=n;+n; ). Here F and () are,
respectively, the strength and frequency of the external elec-
tric field, which is switched on at t=0 (hence the insertion of
a step function). In the calculation we take the length of the
system L=380, a time step Ar=0.04, and the DMRG Hilbert-
space size of m=140 in natural units. After obtaining the
ground state |W) of H(t<0) with the finite-system DMRG
algorithm,'® we let the system evolve according to the time-
dependent Hamiltonian H(¢) with the td-DMRG (Ref. 12) to
obtain the wave function |W(¢))=U(t;0)| W), with the time-
evolution operator U(z;¢")= T exp(—if i,H(s)ds) (T is the time
ordering).

For >0, the system relaxes into a nonequilibrium steady
state, where we can define the photodoping rate as x,(7)
=%Ei(avOI’(t)|n,¢nil|‘I’(t))—(\lf0|n,¢n,¢|‘1f0)) which is the in-
crement in the double occupancy. We also monitor the total
energy, E,(1)=av{(¥(t)|H(t)|¥(1)). In these expressions, we
eliminate the Tyeri0q=27/{) oscillation by taking the average
over each period, as denoted by “av.” The time profiles of the
photodoping rate and the total energy in Fig. 1 are similar,
which indicates that the energy absorbed from the ac field is
used to excite electron-hole pairs, i.e., photodoping. The sys-
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FIG. 1. (Color online) Inset: time-dependent DMRG result for
the (a) total energy and (b) photodoping rate for the half-filled 1D
Hubbard model with U/#,,,=8.0 and 2=8.0. The main panels de-
pict their final values at r=T vs the field strength F, where the solid
lines are parabola fitted to the data.

tem relaxes to a steady state until the situation where pair
production rate=annihilation (stimulated emission) rate is
achieved.

The doping rate depends both on the frequency () and the
strength F of the electric field. When () is greater than the
Mott gap A, excitations occur via one-photon absorptions.
Even when () <A, multiphoton processes can excite the sys-
tem above the gap for sufficiently strong fields, where the
process becomes resonant when m (0=A with m being an
integer.!” The extreme case is the dc limit ) —0, where
many-body Landau-Zener tunneling across the Mott gap in-
duces metallization. 31417

III. CORRELATION FUNCTIONS

To characterize the 1D many-body system we calculate
the correlation functions after a steady state is attained,

xap(t:T13i,j) = (W(0)|A;U(2,T))B;| W (T))), (1)

where A and B are operators, e.g., the current
Ji==ithopSolcly ocio—H.c.) or the spin §i=%§)a3cja5'aﬁciﬁ,
and T is the time around which the steady state is reached
(and the curves in Fig. 1 flatten; typically 7,=50 and 100
depending on the field strength). Physically, y;, represents
the probing process in standard pump-probe experiments,
where a photon in the probe light generates a local electron-
hole pair at position j. To focus on the interplay between the
charge and spin degrees of freedom, we can compare in Fig.
2 the current correlation function with the behaviors of spin
and charge. For the spin we define the local spin energy,
ePN(0) 1 Joxen= (W' (1)|5;41- 5|/ (1)), which measures the ex-
change energy (normalized by the exchange coupling Je,p
=415,/ U).2 For the charge we examine the double occu-
pancy defined by nf(t)=(V’(t)|n;n; | W' (1)). Here |W())
:U(t,Tl)Jj|\I’(T1)> is the state where a perturbation (J)) is
added at site j on the steady nonequilibrium state. The be-
havior of the three quantities shows that the temporal evolu-
tion after the probe excitation on j at t=T, propagates in two
processes. The first is diffusion of the doublon-hole pair,
which is followed by the relaxation process. The relaxation
is seen as a decay of the current correlation, which is seen to
be accompanied by a disturbance in the spin structure (as
marked with a red broken line in the figure). This indicates
that the spin and charge degrees of freedom become coupled
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FIG. 2. (Color online) (a) Current-current correlation
Im x;,(t,Ty;i,j), (b) local spin energy £:P"(r), and (c) double oc-
cupancy n;l(t) for zero field F=0 (left panels) and for a finite field
F=0.2 (right) with U/,,,=8.0 and {}/#;,,,=8.0. Here the probed
position j in the pump-probe process is set to be at the center
(j=40) of the 1D system with length of 80. Broken lines indicate
the region for relaxation due to spin (see text). The small ripples

[(c) right panel] are the T=27/€) period fluctuation.

more strongly, where spins act as a kind of energy reservoir
for charges. Spin-charge coupling already exists in equilib-
rium for higher-energy states,?! which is natural since charge
excitations act as boundary conditions to spins with spin van-
ishing at doubly occupied or empty sites. The decay of the
current correlation, already present for zero ac electric field
(F=0), becomes faster in finite fields, which implies that the
spin-charge coupling becomes stronger, due to higher-energy
states becoming involved. However, in the field range stud-
ied here, the coupling is not strong enough to destroy the
spin-charge separation picture,'? i.e., the spin and charge de-
grees of freedom still have independent dispersions, as will
be discussed below.

IV. COLLECTIVE EXCITATIONS IN NONEQUILIBRIUM

So what is the nature of the photoinduced carriers? We
can obtain the excitation spectrum as the Fourier transform
of the correlation functions,

T1+T, o
XAB(q’w) = f dtz elw(t_Tl)_lq(]_jc) Im XAB(I’ Tl ;j’jc) >
T, Jj

(2)

where T, is set to be prior to the time at which the wave front
reaches the sample boundary. We call the quantity, following
the equilibrium case, the optical spectrum for x;; and the
spin spectrum for .

A striking feature in the result in Fig. 3, a key finding
here, is that while we have an optical gap (equals as a Mott
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FIG. 3. (Color online) The optical spectrum, Im x;,(q,w), with
U/ thop=38.0 for (a) the half-filled case with no ac fields, (b) the half
filled with a finite ac field F/#;,,,=0.1, and (c) the electron doped
with no ac fields (n=1.025,F=0).

gap) in the zero ac field [Fig. 3(a)], a set of states with a
zero-gap linear dispersion, wq~vPTL|q|, emerges in the gap
in finite ac fields [Figs. 3(b) and 3(c)]. We call the metallic
state a photoinduced Tomonaga-Luttinger-type liquid in the
sense that its charge velocity vpyy is renormalized by the
electron interaction. Its value is, in fact, similar to the equi-
librium counterpart as can be seen by comparing the slope in
nonequilibrium with that for the equilibrium-doped systems
[Fig. 3(c)].

If we turn to the spin spectrum in Fig. 4, we can clearly
see the des Cloizeaux—Pearson mode in equilibrium (pre-
cisely speaking, this was obtained by the Bethe ansatz
method??), which survives in finite fields. We note that the
charge and spin velocities defined and numerically obtained
in nonequilibrium here are different. So in this particular
sense we have a spin-charge separation. As the field becomes

F=0.4

FIG. 4. (Color online) (a) Spin correlation Im x,,(¢,T;;i,j) for a
zero field (left) and for a finite field F=0.4 (right) with U/ty,
=8.0, Q/t4,=8.0. (b) Color-coded spin spectrum Im y,,(q,®) in
the half-filled Hubbard model with U/#,,,=8.0 for a zero ac field
(left) or for a finite ac field F/f,,,=0.4 (right). The white dashed
lines are the des Cloiseaux—Pearson mode. (c) The AF peak
Im x,(q,w=0) vs ¢ are also displayed for various field strengths.
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stronger, the spectrum becomes blurred. Specifically, the an-
tiferromagnetic (AF) fluctuation represented by the peak
value x,(¢~ 7, w~0) becomes smaller, which should be
because the induced carriers act to melt the magnetic order.

V. EFFECTIVE MODEL

Due to its many-body nature, it is difficult to obtain a
mathematically rigorous analysis of the photoinduced metal-
lic state in Mott insulators. However, we can carve out some
of its properties in terms of an effective model, which was
initiated by Mori and Fukuyama,”® Luther and Emery,>*?
and Giamarchi?® to study linear responses in the presence of
a charge gap. In this approach we start from the
1+ 1-dimensional massive Thirring model. The charge de-
grees of freedom are represented by two spinless fermions
W=[¢(x), r(x)], where ¢, and ¢, represent left mover and
right mover, respectively, and the Hamiltonian reads

HII;AT(I) = vcf dx[\lﬂ'(x)(— V(Do + %(71)\1’()()] +H,,
(3)

where o; is Pauli matrices, v,. is renormalized charge veloc-
ity, and A is the umklapp-scattering coupling constant, an
ascendant of the original Mott gap at half filling. This model
is dual to the sine-Gordon model, where the size of the in-
teraction term H,=g[dx[(V W)= (W7, ¥)?] translates to
the sine-Gordon coupling through a duality relation.?” How-
ever, in the following we make a further simplification,
namely, we neglect the self-interaction H;. This by no means
implies a neglect of the original electron-electron interaction
but amounts to neglect self-energy corrections to quasiparti-
cle lifetime, etc. We employ this approximation to focus on
the effect of the charge gap, which primarily appears from
the first term in Eq. (3).

The ac electric field is taken as the coupling, V.(r)=4,
+iA (), in the above, with A;(z)=(F/Q)sin Q. We then ob-
tain the nonlinear and nonequilibrium evolutions of the state
in this model. After a Fourier transform, the equation of mo-
tion becomes i(%|‘l’k(t)>= [v [k+(F/Q)sin Qt]o
+%0'1}]|‘Ifk(t)). Here we adopt the Floquet method for treat-
ing systems in ac fields (see, e.g., Ref. 28), i.e., we seek a
solution of the form |u,(k;1))==,,e eal=imY| ()} where
m is the Floquet index, « labels the eigenstate, and ¢, is the
Floquet quasienergy. From the equation of motion, the Flo-
quet modes satisfy a set of linear relations
S (Hep)™|u (k)= (k)|u(k)), where the effective Floquet
Hamiltonian has matrix elements (Heff)’”’”=vckcr3+%0'1
~mQay, (He)™"'=%fv.§os. We consider a sudden
switch on of the ac field, i.e., the time evolution starts from
the ground state |i(k)) of vck0'3+%crl. The solution is then
|90k 1) =2 o b () ok 1)) with b (k) =(u(k) | ho(K)). The
current correlation function in this model is®’

Im XP(g.0)

_oe2| 2
=2e 2770%" [|¢,3(k)|

— | ok +q)* 18 egk) — £4(k + q) + ®]
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FIG. 5. (Color online) (a) The optical spectrum Im x°™(q, w)
of the effective Dirac model in a finite ac field with {}/A=1.5 and
F=0.1. (b) The Floquet quasienergy &,(g), where the red lines rep-
resent occupied states and green lines represent unoccupied states.
(c) A schematic level repulsion.

X Til WSk + )2k + @) lulg (D GH) 7). (4)

The optical spectrum [Fig. 5(a)] shows that a metallic linear-
dispersion mode emerges in the gap in the presence of an ac
field. The result does resemble the present td-DMRG result
(Fig. 3). The spectrum, despite being nonequilibrium, is also
similar to the massive Thirring model result for the doped 1D
Mott insulator.?? The origin of the gapless excitation in non-
equilibrium can be traced back, in the present massive
Thirring+ Floquet analysis, to the quasienergy-level scheme
in Fig. 5(b). In the absence of ac fields, the Dirac model has
two branches with the lower band completely filled. As we
turn on the ac field, we have a series of replicas (i.e., Floquet
modes equally spaced by () for each of the electron and hole
branches. Physically, these modes correspond to m-photon
absorbed states. As in standard quantum mechanics, level
repulsion takes place when two modes cross with each other
with a nonzero matrix element between them. In our model,
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the most important feature is the level repulsion between an
occupied Floquet mode [red in Fig. 5(b)] and an unoccupied
one (green). As shown in the blowup [Fig. 5(c)], gapless
excitations then emerge across the occupied and unoccupied
states, which should contribute to the optical spectrum when
we evaluate Eq. (4). Specifically, the linear dispersion of the
photoinduced state is wq~vc|q , where the renormalized ve-
locity v., a parameter independent of the spin velocity v,
mtﬁop/ U, is conceived to have a value that depends on the
detail of the irradiation.

Another interesting point is when the photon energy () is
below the gap A. In this situation, multiphoton processes
with m =2 are necessary to excite the system. We can indeed
show that, when the condition ) ~ A/m is met, the excitation
becomes resonant and carriers are injected efficiently, which
will be described elsewhere.

In conclusion, we have shown that a Mott insulator irra-
diated by strong ac electric fields has a collective mode
which is reminiscent of the Tomonaga-Luttinger liquid in
equilibrium. While spins and charges are coupled in the re-
laxation process, the collective modes have different spin
and charge velocities. Emergence of the linear collective
mode is also supported by an effective Dirac model.
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